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About ACM Lab

e Advisor
Ching-Chun Huang (=%{%%)
Department of Computer Science, NYCU
* E-mail
chingchun@cs.nctu.edu.tw
* Website
http://acm.cs.nctu.edu.tw/
* Fanpage Facebook

https://www.facebook.com/Applied-
|
/z/

Computing-and-Multimedia-Lab-
324057595098662/



Outline

* Introduction of ACM Lab

* Research Topics

* Introduction of Projects

* International Laboratory Co-operation
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Introduction of ACM Lab

Current students
8 Master students
e 2 Researchers

Graduated students
e 21 Master students Taiwanese
19 Undergraduate students students

International
students

Current students
e 2 Master student

Graduated students
e 2PhD
e 6 Master students
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* Research Topics
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Research Topics — Smart Traffic
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Domain Adaption Parking Lot System
2019 ~2020

.. Task Consistency Parking Lot System
= 2020~2021
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Input Estimate

Depth Completion
2018 ~ Autonomous Vehicle,

2016 ~ 2022




Research Topics — Visual Data Analysis/Enhancement

U i - Medical Image Analysis
2018 ~2019
WARNING .

Trespassmg or causing
mﬁance on a scn‘ool S|te can Iead
- toa crlmlnal convnctlon

mmbﬂ olmEducanonArfluss

Image Super-
resolution/Enhancement/Restoration
2018 ~ 2021
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Ap—,
A,
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Lsarning Ser/ices

{ 7 s . e Optical Character Recognition
2018 ~2019 |,



Research Topics — Smart Bwldmg

User

..........

........ Al System

choke valve 55
o

Tem, pera;il re’”’setpoint, o
choke valve

loT Wearable Device for - ' Ay BUREES
Localization and Guidance System : /@ -
2018

TSMC Smart Office
2018 ~2021

| g ——————————— o ————————————

Rules of
Building Control Indoor Occupancy

QQQ

\ Indoor Occupancy,
~

Brightness
nghtlng 000 Q0 9

System
Rate of Lights Be Turned O

__________
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"Visual Comfort

Target Temperature
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Research Topics — 3D Pose Estimation
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L *"'}“‘"»7 L
i % ¥ 5 o B
2  Emeiinad
b T TRCS A e 05 S T
-y ",

Skeleton-based Human-Computer Interaction
2018 ~2019

throw action

Pilot Training System
2018 ~2020

' ‘action2motion.

~\S // Action to Motion
2021~2022 10
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Smart Traffic — Parking Lot

“Parking Lot Management System”
“LoRa based Parking Lot Management System”
“Domain Adaptation Management System”
“Task Consistency Management System”

14



Projects

. Project Name: &+ iER B Y ~ B FF AL ~ S Y 2 0 * 4]0
B i%ﬂg B
* Project Period : 2019/8/1~2020/7/31
* Cooperation Vendors : {7 T fL 3 3R

* Project Name: & * /# R B ¥ ~ b BR Pl ~ 22 LoRat B e id 217 IR
R LSRR A EET
* Project Period : 2017/11/01~2018/10/31
* Cooperation Vendors : {7 Exl‘mﬁiji""i CREFRKFF AP

* Project Name : B> 1§ 3\ = ¢t izd 7 = & R W P
* Project Period : 2016/11/01 ~ 2017/10/31
* Cooperation Vendors : {7 Fxfaft 538 ~ B4F &KL 7> 5 L2 &
PR T AFERI R SRR LATR TR T RS

(7 2017 ~ 2018 ~ 2019
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Parking Lot Management System

e Goal:

* Use a camera (or multi-camera) to detect the entire parking space with
deep learning method.




Parking Lot Management System

* Challenges :

e Qutdoor lighting variation, inter-object occlusion and perspective
distortion.

* Non-unified vehicle size and uncontrollable parking displacement.




Parking lot system demo : Sunny

Parking lot system demo : Rain




LoRa Based Parking Lot Management System

e Goal :

 We are going to propose well-designed deep learning networks for
recognizing the sequential patterns of magnetic signals.




LoRa Based Parking Lot Management System

* Challenges :

* The interruption from environment magnetic fields and
environment noise.--(a)

 The variety of magnetic signals due to vehicle types. --(b)
* The interruption by moving vehicles.
 The non-unified coordination of magnetic sensors. --(c)

 The annoying magnetic responses caused by the status changing of (2)

neighboring spaces.--(d).

/ -vo“j :
{ ‘B‘
(P74 0% :

. 0 \_-
150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time (s) Time (s)




e Result




Domain Adaptation Management System

e Goal:

* Develop a parking lot inference system across different domains through
unsupervised learning without paying extra labor-intensive efforts

Temm L
< NWEES o
Tk mmm= 77
/ﬁ’:t = 9 = fFoE !Lilﬂ
TN ; ” E m - '3 v \#"Q. ﬁ
| » © = :
~ > -
=
Taskl: two-domain adaption Task2: multi-domain adaption
D2NA: DAY-TO-NIGHT ADAPTATION FOR VISION BASED DADA net: Multi-Domain Attribute Disentanglement and

{ / PARKING MANAGEMENT SYSTEM Adaptation network for vision based parking management system

—
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Domain Adaptation Management System

* Challenge

* Lack of labeling data for new domain

The negative transfer problem

Low-transferability of high-level feature

How to translate the correct synthetic image

Traditional domain adaptation only suitable for adaption between two domains

Ry
e

Domain-specific Domain-common

feature feature
Eg. Daytime & nighttime style Eg. Parking state

DG




e Result:

Inception score compare with other methods

u, T. Park, P. Isola and A. A. Efros, "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks," in IEEE International Conference on Computer Vision (ICCV), 2017.
] M. Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image translation networks,” arXiv preprint arXiv:1703.00848, 2017.
[25] X. Huang, M. Y. Liu, S. Belongie, and J. Kautz, “Multimodal Unsupervised Image-to-Image Translation,” In Proceedings of the European Conference on Computer Vision (ECCV), 2018
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Task Consistency Management System

e Goal:

 a novel framework that allows the system to train a target model
(e.g., a vacant-space detector) via the task consistency with a
source model (e.g., a car motion classifier).

Environment
(a video sequence)

Motion classification task ol

yS—=~-Carmovingout
No motion

Source

Source featu re selector
model

Motion classifier

Consistency
interpreter

Vacant sapce detector action

. | Vacant
~ | Occupied

Target feature selector

Vacant-space detection task



Task Consistency Management System

* Challenge:
* the source task could make false detections during the learning process

* Heavy human loads: it still requires enough new labeled samples to finetune
the target network, given a powerful pre-trained model



e Result

120 videos from a 90-

degree view camera Local slot normalization e
Each video includes (Laar062)T

EX
500 fl’a mes » 0:::,:2 - b. Magnitude

. Flow
i L

(144+96'3) - -
Crop the motion segment -
from the optical flow

Extract 1530
training trajectories

Vacant-space
detection
model

Training
process
Application stage

Supervised lea,rnlng (Fine 97 93 98 18 98 57 98 76 99 21 Z P e Pk i,
Task consistency learning 98 84 99 15 99 37 99 57 99 69 WS el e 7/ <78 CRESREN R %
Task consistency learning (| 98.15 98.38 98.45 | 99.48 99.54 S . =4

- M means the number of training samples for supervised learning.
-N means the number of training trajectories for task consistency learning. 45-degree view(as new parking lot scenario) 90-degree view (as original parking lot scenario)

/4 e et =_ ey
) &P EeRasen

S = ' L=




e Publication:

e Manh Hung Nguyen, Tzu-Yin Chao and Ching-Chun Huang, "Vacant Parking Space Detection based on Task

Consistency and Reinforcement Learning", International Conference on Pattern Recognition(ICPR), Jan., 2021.

* Wei-Zhong Zheng, Vu-Hoang Tran and Ching-Chun Huang, "D2NA: DAY-TO-NIGHT ADAPTATION FOR VISION
BASED PARKING MANAGEMENT SYSTEM", IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), May., 2020.

* You-Feng Wu, Hoang Tran Vu, Ching-Chun Huang, "Semi-supervised and multi-task learning for on-street
parking space status inference", Multimedia Analysis and Pattern Recognition (MAPR), May, 2019 (Best
Paper Award)

* Hoang Tran Vu , and Ching-Chun Huang, "Parking Space Status Inference upon a Deep CNN and Multi-task

Contrastive Network with Spatial Transform", Submitted to IEEE Transactions on Circuits and Systems for Video

Technology. Accepted (April 2018)

* Hoang Tran Vu, and Ching-Chun Huang, “A Multi-Task Convolutional Neural Network With Spatial Transform For

Parking Space Detection”, IEEE International Conference on Image Processing (ICIP), Sep, 2017.

* Ching-Chun Huang, and Hoang Tran Vu, “Parking Space Detection Based on a Multi-task Deep Convolutional

Network with Spatial Transform ", Computer Vision, Graphic and Image Processing (CVGIP), Aug, 2017.



e Publication:

e Chingchun Huang and Hoang Tran Vu, “Vacant Parking Space Detection based on a Multi-layer Inference

Framework,” IEEE Transactions on Circuits and Systems for Video Technology, May, 2016.

e Ching-Chun Huang, Yi-Ren Chen, and Hoang Tran Vu, “Vacant Parking Space Detection Based On A Hierarchical

and Semantic Classifier”, Computer Vision, Graphic and Image Processing (CVGIP), Aug, 2015.

* Ching-Chun Huang and Hoang Tran, “A Multi-layer Discriminative Framework for Parking Space Detection”, IEEE

International Workshop on Machine Learning for Signal Processing, Boston, USA, Sep, 2017.

e Ching-Chun Huang, Hoang Tran Vu, and Yi-Ren Chen, “A multiclass boosting approach for integrating weak
classifiers in parking space detection,” IEEE International Conference on Consumer Electronics - Taiwan, Taipei,

Taiwan. Jun, 2015.

* Ching-Chun Huang, Yu-Shu Tai, and Sheng-Jyh Wang, “Vacant Parking Space Detection Based on Plane-based

Bayesian Hierarchical Framework,” IEEE Transactions on Circuits and Systems for Video Technology. 2013.

* Ching-chun Huang, Yu-Shu Dai and Sheng-Jyh Wang, "A Surface-based Vacant Space Detection for an Intelligent

Parking Lot", IEEE International Conference on ITS Telecommunications (ITST), Taipei, Taiwan, Nov. 5-8, 2012, (El)
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Smart Traffic— Autonomous Vehicle

“Depth Completion”
“Lidar Completion”
“Vehicle Detection”
“Traffic Sign Detection”
“Car Distance Estimation”
“Lane Detection”
“Crowd Counting”

30
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Projects

* Project Name : A 3" # o R0 8 2. < i - F 12 %
* Project Period : 2021/1/9~2022/1/8
 Cooperation Vendors :¥ &3 Z /% fx(% % #7)
* Project Name :p & 2 2 iR R § ¥ i & o8 B ILf3 8 s
* Project Period : 2018/12/01 ~ 2021/07/31
* Cooperation Vendors : 7 Fxfof 58
. Project Name %31 A3 RGBDIE R #52 # B A 3§ B2 57 2|9 2 B B 13
B 77 R
* Project Period : 2018/11/01~2019/10/31
. Cooperation Vendors : {7 scfuft H 30 ~ gEF &

e BN A A B ¥ T 3 E (2020 ~ 2021)
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Depth Completion

e Goal :

* Depth completion

* Borrowing useful information from RGB image to complete the sparse
depth image

(proposed) Ours Ground truth

* A self supervised system that can be trained without the ground truth

dense depth 1

L - . -
o i - Photometric
el o]

Proposed self-supervised depth completion system

Warping

Warped RGB1



Depth Completion

* Challenge:

* Mixed depth pixels
* Distorted and blurry edges emerge in the depth maps

» Solution: new depth representation, classification problem, cross entropy
loss

* Excessively rich texture details on color images
* Undesired depth estimation results

* Solution: disentangle only useful information from RGB image to complete
depth

» Spatial-scale offset
 Solution: use both color image and sparse depth image



{

e Result :

Input

Ground truth

Estimate

Error

Example depth completion results on ScanNet test set.

34



e Result




Lidar Completion

e Goal :

* Increase the number of point cloud from the raw LiDAR data in 3D

S '7": o =
e : =
== ¥

Spavﬁl:;é Vpdinrt' cloud WV(OriginaI)

Dense Point cloud

N=m

Local Compression vectors

Point cloud sampling
and Grouping




Lidar Completion

* Challenges:

* Most of the depth completion methods suffer from the edge-blurry
problem.
* We use a more geometric way to solve the problem.

* Our method up-samples the point cloud in the 3D coordinate directly.

Dense depth map

Sparse depth map RGB imag{e

Depth
Completion Project to 3D

Noisy point cloud »




e Results

Comparison with State-of-the-art Methods

[ Method | RMSE (3 R )
DSPN [1]
MSG-CHN [2]

Ours (1%t year)

Ours (2" year)

[1] Z. Xu, H.Yin and J. Yao: Deformable Spatial Propagation Networks For Depth Completion. 2020 IEEE International Conference on Image Processing (ICIP) 2020.
[2] A. Li, Z. Yuan, Y. Ling, W. Chi, C. Zhang and others: A Multi-Scale Guided Cascade Hourglass Network for Depth Completion. The IEEE Winter Conference on Applications of
Computer Vision 2020.




e Results

Example depth completion results on KITTI test set.
Sparse point cloud

Prediction

| E e i S




Vehicle Detection

e Goal:

* Based on the point cloud generated by Lidar, detect objects and generate
corresponding 3D bounding boxes in real time

Pillar Feature
Extraction




Vehicle Detection

* Challenges:
e Large amount of computation on LiDAR-based 3D object detection
e Solution: using pillar to be a unit in order to reduce the computation
* Lidar is sparse and has difficulties in detecting small objects
 Solution: using dynamic receptive field to collect more information

e Target pillars contain some redundant points

» Solution: using loss to constrain the distribution of the feature of target
pillars



e Result :

3D Vehicle Detection Results Comparison with State-of-the-art Methods

Car FEMETE (%) Speed(FPS)
2019 Uber [1] 70.22 13
2020 CMU [2] 72.29 1.67

2020 Samsung [3] 73.34 25
Ours 74.85 (+4.17) 60 (+30)

[1] Ming Liang*, Bin Yang*, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-sensor fusion for 3d object detection. In CVPR, 2019.
[2] Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: CVPR (2020)
[3] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. Object as hotspots: An anchor-free 3d object detection approach via firing of hotspots. ECCV, 2020




e Result
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e Result

16 bin+
our vehicle detection module

64 bin+
PointRCNN

64 bin+ our Lidar completion
+our vehicle detection module




e Results

16 bin+ 64 bin+ 64 bin+ our Lidar completion
our vehicle detection module PointRCNN +our vehicle detection module

16bin 60fps 64bin 10fps




Traffic Sign Detection

e Goal:

* Deploy a well-trained traffic sign detector into another domain (from country
A to country B)




Traffic Sign Detection e ——

N o
agEIRIER

)
= -—

* Challenge:

 Traffic signs in different
countries have diverse
styles

* Re-labeling the ground

truth in a new domain is
a heavy burden DN(Conditional Domain Normalization)

Learned and Saved source feature

result

Aligned

[o-



e Results



Car Distance Estimation

e Goal:
» Estimate the car distance by single camera

- . .
n] Camera Calibration

Neural Network Post-Processing




Car Distance Estimation

* Challenges:
* Lacks of depth r
information RIa & wagaEE  2DREAHEREE (3D bounding boxJE2L

(Real Time %= 1%J:F1‘ - HE  BEAK/N

Monocular 3D Detection)

* Conventional
methods that is
data-driven tend
to have the issues
of:

e Overfitting
* Hard to apply to

other cameras
7




e Results
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Lane Detection

e Goal :

* Create a robust vision-based lane detection and tracking in different
scenarios.

Front-view image Lane detection result



{

Lane Detection

* Challenges :
* Noises from various lane marking

e Texture marking, Zebra crossing, Crossroad signs, Intersection, Curve
lane

53



e Result :

7
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Crowd Counting

e Goal :

* Given the crowd image, we build the Deep Learning model to estimate
the crowd density map and count number of people. (UAV based)

Crowd images

R "'-»*w,. C TR TR
N X
e K ) ;
L o
|
A
v

Full-resolution density map
and crowd counting

. 1 e
':“" -' l’-’
:
Sl s 3 TR e
bl iR
-
LA .

Deep Learning Model -

Number of people = 1095 individuals



Crowd Counting

* Challenges :
* The significant scale variation in highly congested crowd
* The estimated density map has low resolution

HxW

Examples of high crowd density

56



e Result :

The illustration on ShanghaiTech dataset The illustration on UCF_CC_50 dataset
P > E —'!:‘T! - FLT 4" =7 - RASTR STy IV LA - oo -

S ;\'&ysg:ig e
) ’.' - u.‘ l.“!’ e
P

S ~

£ :‘."‘. »‘l -:.

- § ~ ’* < W GT count: 797 : . Est count: 670 ’ 3 N 4 Est count: 817
" o 2 P ACTRBDIIENS e o 2 S ~ ont e
L -k Fy e JSySe WSS g " -t L L
s 8% _o g o0 » e . RS s 4 g
..- s O'.D n'. o.. . ° . ** IC.
GT count: 199

Est count: 175

GT count: 682

Est count: 736
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e Publication:

* You-Feng Wu, Vu-Hoang Tran, Ting-Wei Chang, Wei-Chen Chiu, Ching-Chun Huang, "DEN: Disentangling and

Exchanging Network for Depth Completion", International Conference on Pattern Recognition(ICPR), Jan., 2021.

* Van-Su Huynh, Vu-Hoang Tran, and Ching-Chun Huang, "I[UML: INCEPTION U-NET BASED MULTI-TASK LEARNING FOR
DENSITY LEVEL CLASSIFICATION AND CROWD DENSITY ESTIMATION", IEEE International Conference on Systems, Man,
and Cybernetics, 2019.

e Van-Su Huynh, Vu-Hoang Tran and Ching-Chun Huang , "DAnet: DEPTH-AWARE NETWORK FOR CROWD COUNTING",
2019 IEEE International Conference on Image Processing(ICIP), Sept. 2019.

* Tzung-Yan Tsai, Zhe-Yu Lu, and Ching-Chun Huang, "License Plate Recognition System Based on Deep Learning",

International Conference on Consumer Electronics - Taiwan (ICCE-TW), Yilan, Taiwan, May, 2019

 Thanh-Phat Nguyen, Hoang Tran Vu, and Ching-Chun Huang, "Lane Detection and Tracking based on Fully
Convolutional Networks and Probabilistic Graphical Models", IEEE International Conference on Systems, Man, and

Cybernetics, Oct., 2018.

e Ching-Chun Huang, Hoang Tran Vu, Tsann-Tay Tang, "Inter-Vehicle Communication, License Plate Verification, and

Distance Estimation for the Construction of Driving Surroundings", International Conference on Connected Vechicles &

Expo, Nov., 2014.
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Visual Data Analysis/Enhancement

“Image Compression”
“Medical Image Processing”
“Adaptive Image Super-resolution”
“Invertible Image Super-resolution”
“Visual Data Exposure Correction”
“Optical Character Recognition”
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Projects

Project Name : 28 3% 24 = 4527 mzﬁ;%@%g
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~ Inputimage

Image Compression

a,b component L component

* Goal :
Color hint

e Learn Deep Image Structure Prior for extraction
Ultra-Low Bit Rate Image Compression.

Compressed
Information

Tranmission

BPG Encoder

BPG Decoder

"Artifact reduction
network

Colorization
network

//\\
\ >
Output Image

9}eualeduod I@
~—




Image Compression

* Challenges :
* The image quality is usually degraded at very low bitrate.

* How to find out that which necessary information should be
transmitted and which prior information that deep learning model
provides.



1, BPP: 0.489, MSE: 49.436, PSNR: 29.122, SSIM: 0.911,
CMSSIM 0.537, Lab: 2.903, RGB angle: 1.805.

wuu |

‘“‘*an 956

Without fusion network, BPP: 0.577, MSE: 30.995, PSNR: With fusion network, BPP: 0.596, MSE: 28.503, PSNR:
30.864, 55IM: 0.906, CMSSIM: 0.729, Lab: 2.45, RGB angle: 31.451, SSIM: 0.911, CMSSIM: 0.762, Lab: 2.346, RGB
( 1.802 angle: 1,551 / & AV
7/ Original BPG Result Our Result

Image 63
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Medical Image Processing

e Goal:

* Build up a deep learning model for accurate and robust
segmentation of abdominal organs on CT scan

deep learning model

-
m a

Input CT scan segmentation of
abdominal organs

Guidance uidance
generator &

Training

64
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Medical Image Processing

* Challenges :

e Segmentation difficulty in CT-

scanned data

* Weak boundaries of organs, Clustering
background, High appearance similarity
between organ and tissue and
Appearance variation caused by
external factors

* Large variation of organ

* Large variation of organ size and shape
through the longitudinal axis

-y .

weak boundaries of organs



e Result

Input

Ground truth || /&.% fn‘

Prediction | »3. % ' J,’,:\ | 'f.’

Background Spleen Kidney (R) Kidney (L) gallbladder  esophagus

adrenal adrenal
gland (R gland (L




Adaptive Image Super-resolution

e Goal: Propose a novel and effective algorithm for learned image
super-resolution.

SISR Backbone (Fixed)

e}

Maxnmum ' ,
~ Likelihood | |

Confidence
Network

‘ Distortion/
. Perception |

' ’1 Boosting Loss |
/ Boosting Network : WY =

Confidence guided fusion



Adaptive Image Super-resolution

* Challenges:

* Most research only focuses on network architecture design, and the
performance improvement in such a design comes from an increase of the
parameter number and the elaboration of neural connection

* Most research focus on optimization for distortion or perception separately,
but few studies focus on optimization for the tradeoff between them




\(./

e Result :

HR (Ground truth)
LR (Input) (PSNR/ ssn\/|/ LPIPS/NIQE)

I//
Wy
/

[{/ /{i/f// ///// ///ézl

/ '/1 /'/// il

Qy /A
\'?.,fff. '

'f %”
//// ,,J /g}'///r ﬁ

"’ /.',v ”A |

/

/// /// /,
I Il{l q,_._... mn ‘l

SR1 SR2 Fu5|on
(27.83/0.8541/0.2312/4.7002) (26.91/0.8083/0.2182/ 4.3194)  (26.93/0.8159/0.2062/4.2122)

69



e Result :

HR (Ground truth)
(PSNR/ SSIM/ LPIPS/NIQE)

| o

LR (Input)

SR1 SR2 Fusion
(26.39/0.5764/0.3943/6.3587) (25.37/0.5075/0.3203/4.4971) (25.37/0.5082/ 0.3216/4.489)

70



Invertible Image Super-resolution

* Goal:
* Learn conditional Image rescaling by invertible neural network

* Address the ill-posed problem of image super-resolution

Case — Specific xy

Sam le B
Rescaling

Net

Case — Specific Xy

Invertible
Rescaling




* Challenges:

e Current method sample high-frequency information independent of low
resolution image

e Solution: Sample accurate high-frequency information by exploiting low-resolution
information.



e Result :
Ground-truth
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Visual Data Exposure Correction

e Goal :

* Low-light Image Enhancement on Mobile Phone
* Improve image brightness and reveal hidden information in darken areas.
;‘i?‘{.‘mﬂ}_. \

Generate multi-exposure & W

]
image - —— Encoder

|
I
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Visual Data Exposure Correction

* Challenges:

e Conventional methods fail to recover image detail in extremely dark or bright
dareas
e Solution: Generate multi-exposure image and fusion them.
* Model may over enhance normal images
e Solution: Using multi-exposure dataset to train a model for multi-exposure correction.



e Result :

Comparison with State-of-the-art Methods

Dataset : FiveK PSNR(T) SSIM(1) NIMA(1)
UEGAN [1] 21.28

Zero-DCE [2] 13.45
DeepLPF [3] 23.908

[1] Zhangkai Ni, Wenhan Yang, Shigi Wang, Lin Ma, Sam Kwong. Towards Unsupervised Deep Image Enhancement with Generative Adversarial Network. In TIP 2020.
[2] Chunle Guo, Chongy Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, Runmin Cong. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. In CVPR 2020.
[3] Sean Moran, Pierre Marza, Steven McDonagh, Sarah Parisot, Gregory Slabaugh. DeepLPF Deep Local Parametric Filters for Image Enhancement. In CVPR 2020.




e Result :

Input
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e Result : Reduce the color deviation of other method

Ground
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Optical Character Recognition

* Goal :
* Detecting and recognizing scene texts or documents.

—()—

“l il

i», Predict bounding boxes e
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Input scene image Feature extractor
Text/non-Text Head (a) Transformer Text

Proposal

Feature
A

or
(b) Bidirectional LSTM

—éj Output text on & & & & &

the image Text decode




Optical Character Recognition

° Cha”enges . incomplete text

 Text Detection :

d

b)

)

9

* Text Recognition :
a)

b)

%C

)

Curved Text : It’s hard to frame
up curve text with rectangle box

Perspective Text

Complicated Background :
Model usually consider line-
shaped object as text

unsH
Incomplete Text : The missing

character is hard to be perspective text
recognition by model without x
Language Model. N - %

llumination Text
Blur Text

N 2z

Yiyan ?“»

curved text illumination text



* Result
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e Publication :

e Ching-Chun Huang, and Hung-Nguyen Manh, "X-ray Enhancement based on Component Attenuation, Contrast

Adjustment, and Image Fusion", IEEE Transactions on Image Processing, July 2018.

* Y. C. Huang, Y. H. Chen, C. Y. Lu, H. P. Wang, W. H. Peng, and C. C. Huang, "Video Rescaling Networks with Joint
Optimization Strategies for Downscaling and Upscaling", Conference on Computer Vision and Pattern

Recognition(CVPR), June, 2021.

* Chung-Sheng Lai, Zunzhi You, Ching-Chun Huang, Yi-Hsuan Tsai, Wei-Chen Chiu, "Colorization of Depth Map via

Disentanglement”, European Conference on Computer Vision(ECCV), Aug., 2020.

* Ching-Chun Huang, Nelson Chong Ngee Bow, Loh Yuen Peng, Punchok Kerdsiri, amd Vu-Hoang Tran, "DEN:
Disentanglement and Enhancement Networks for Low lllumination Images", IEEE International Conference on Visual

Communications and Image Processing(VCIP), Dec., 2020.



e Publication :

* Ching-Chun Huang, Thanh-Phat Nguyen and Chen-Tung Lai, "Multi-channel Multi-loss Deep Learning Based

Compression Model For Color Images", 2019 IEEE International Conference on Image Processing(ICIP), Sept. 2019.

* Vu-Hoang Tran, and Ching-Chun Huang, "Domain Adaptation Meets Disentangled Representation Learning and Style

Transfer"”, IEEE International Conference on Systems, Man, and Cybernetics, 2019.

* Ching-Chun Huang, Ismail, Ming-Xun Cai, and Hoang Tran Vu, "HDR Compression based on Image Matting Laplacian”,

2016 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW).

e Atul Kumar, Shih-Wei Huang, Yen-Yu Wang, Wan-Chi Hung, Kai-Che Liu, and Chingchun Huang, "Laparoscopic video
augmentation with infrared image information", 2016 IEEE International Conference on Consumer Electronics - Taiwan

(ICCE-TW).
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Smart Building

“Smart HVAC Control”
“Occupancy Estimation and Prediction”
“Indoor Positioning”
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Smart HVAC Control

* Goal :

* Automatically generate the
parameter settings of AHU to
lower the power
consumption and satisfy the
expected setting at the same
time.

* this system can improve
itself while learning.

N el era»urer'se oint, T
choke valve 2
/ *}‘ ‘..0’
\ =y /
== /
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Smart HVAC Control

* Challenges :

* The extreme and rare dataset problem
* The network tend to fit data with wrong tendency

O_X_AHUT1001_TS.PV
(7/3-7/17)

o0 125 150 175 200

timesteps

Maxoss : 11917322

Minoss . 00UI9%ST Fix environment, compare with different set points.

500 1000 1500 2000 2500 3000
timesteps




Smart HVAC Control

* Challenges :

* The extreme and rare dataset problem

* Rare and extreme data may leave too much uncertain space for the
network

Correct solution

KA

Wrong solution




* Result :
* Learning Property

Mean error: +- 0.125 degree

expectation : 25
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* Result :
* Learning Property

We change the expectation temperature
from 25 - 25.25

Mean error: +- 0.25 degree

energy saving mode expectation :
25.25 degree(C)
original energy saving mode setpoint

indoor temperature
simulation model based Al setpoint

Day 1

Day 2

O
<




* Result :
* Learning Property

Mean error: +- 0.25 degree

temperature setpoint
—out door temperature

temperature by the window
indoor temperature

. positive correlation
to energy saving

m expert controlling

ﬁ Al controlling

The heat load increasing
moment / switch to working mode




Occupancy Estimation and Prediction

* Goal :
e Estimating indoor occupancy and forecasting future occupancy.
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Occupancy Estimation and Prediction

* Challenges :

* How to mix each sensor value into a clear value?
a) We can roughly find the extreme states. (Highest occupancy & Lowest occupancy)
b) Itis difficult to define a clear value for the states between them.

High occupancy
— 1
Sensor data

Elev. down s Al| CO2 e Al POwer

Sensor data on working day

-0
Low occupancy



e Result :

Sensor Value: Workday Sensor Value: Holiday Sensor Value: Special Holiday

Accuracy
I
[0s]

I
~.|

o
)

Number of Intervals

Our Model (Mean Acc. 0.837)
Our Model w/o Physical Rules (Mean Acc. 0.792)
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workday, (b) holiday and (c) special holiday.



Indoor Positioning

In

‘ ' en“jlf’Of Wi-Fi module
= I
< MMen

GPS

£
* Goal : ass)
 Wi-Fi signal based .
Indoor Localization. ﬁ7

(
v/,
/ RSSI: Received Signal Strength Indicator (unit: dbm)



* Challenges :

Occlusion effect Device diversity
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Comparisons on Multiple Devices

Asus, Lenovo, Samsung)

ICe

devi
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Testing (20 samples/location)
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* Multiple devices (Training device
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e Result:

* Multiple devices (Training device: Asus, Lenovo — Testing device: Asus, Lenovo, Samsung)
Localization performance of comparison methods on testing round

Samsung




e Publication:

* Tzu-Yin Chao, Manh Hung Nguyen, Ching-Chun Huang, CHIEN-CHENG LIANG, Chen-Wu Chung, “Online
Self-Learning for Smart HVAC Control”, 2019 IEEE International Conference on Systems, Man and

Cybernetics.

e Wei-Yuan Lin, Ching-Chun Huang, Hung Nguyen Manh and Nguyen Tran Duc, "Wi-Fi Indoor Localization based

on Multi-Task Deep Learning", IEEE International Conference on Digital Signal Processing, Nov., 2018.

e Chingchun Huang, Wei-Chi Chan and Manh Hung-Nguyen, "Unsupervised Radio Map Learning for Indoor

Localization", 2017 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW).

* Hoang Tran Vu, Hung Nguyen Manh, Wei-Chi Chang, Wei-Yuan Lin, Hung-Sheng Cheng, Yi-Ning Chuang and
Ching-Chun Huang, “A Hybrid Method for Visitor Localization and Tracking in a Museum Environment,” The 9th

IEEE International Conference on Ubi-Media Computing, Moscow, Russia. , Aug. 2016.

* Chingchun Huang and Hung-Nguyen Manh, "RSS-based Indoor Positioning based on Multi-dimensional Kernel

Modeling and Weighted Average Tracking", IEEE Sensors Journal, Feb., 2016.

e Ching-Chun Huang, Hung-Nguyen Manh, Yu-Shiun Wang, "An Self-Adaptive Wireless Indoor Localization System

for Device Diversity", 2016 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW).
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3D Pose Estimation

“Kinect Based Skeleton Tracking”
“Head Pose Estimation”



Projects

* Project Name (&> B ez - A > 2 B it 7 5 i B iR 3
* Project Period : 2019/11/16~2020/5/13
* Cooperation Vendors :# L # 5 7 Fx
 Project Name :4Ffe# # T g & JFABMPP L B EEE 0
* Project Period : 2018/03/01 ~ 2018/12/31
* Cooperation Vendors :* L #5517 fx




Kinect Based Skeleton Tracking

e Goal :
* Create a motion tracking system with multiple Kinects to track the user

in 360 degree (marker-free system).
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Kinect Based Skeleton Tracking

* Challenges :
* Solve the self-occlusion problem.

 Solve left-right problem.
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Head Pose Estimation

e Goal :
» Estimate head position and rotation using code/marker based localization

Pilot helmet
/ < with markers

1 B < Multi-Camera
e P | collecting data

e =

L

\t e ¥ 3 l
Training Cockpit

Data processing Virtual environment




Head Pose Estimation

* Challenges :
* High refresh rate estimation
* Multi-cameras data fusion
* Wide range operation of human head



e Result :

Head pose detection Pose estimation Real-time first-person
system iew demo

| Maker detection base |
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Unity model
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e Publication :

e Viet-Toan Truong, Jhih-Siang Liao, and Ching-Chun Huang, “Multi-camera Marker-based Real-time Head Pose
Estimation System,” In: 2020 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). IEEE,

2020. p. 1-6.

e Ching-Chun Huang and Manh Hung Nguyen, “Robust 3D Skeleton Tracking based on OpenPose and a Probabilistic

Tracking Framework,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2019.

* Po-Hsien Wang, Ting-Ying Wang, Ya-Chu Chang, and Ching-Chun Huang, "Immersive 3D Human-Computer Interaction

System", International Conference on Consumer Electronics - Taiwan (ICCE-TW), Taichung, Taiwan, May, 2018.
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Outline

* International Laboratory Co-operation



International Laboratory Co-operation

* Internship program. (Co-advising)
e Duration : 3 — 6 months
* Number of applicants: 2-10 persons/year
e Participants: senior undergraduate student, master student

* Master/PhD program. (Co-advising)

* Number of applicants: 2 — 3 persons/year
* Visiting program.

* Duration : 3 — 6 months

* Number of applicants: 2 — 3 persons/year
* Participants: Lecturer
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