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Abstract

White balance is an algorithm proposed to
mimic the color constancy mechanism of human
perception. However, as shown by its name,
current white balance algorithms only promise to
correct the color shift of gray tone to a correct
position; for other color values, white balance
algorithms process them as gray tone and
therefore produce undesired color bias. To
improve the color prediction of white balance
algorithms, in this paper, we propose a
3-parameter non-diagonal model, named as
PCA-CLSE, for white balance. Unlike many
previous researches which use the von-Kries
diagonal model for color prediction, we
proposed to apply a non-diagonal model for
color correction which aimed to minimize the
color biases while keeping the balance of white
color. In our method, to reduce the color biases,
we proposed a PCA-based training method to
gain extra information for analysis and built a
mapping model between illumination and
non-diagonal transformation matrices. While a
color-biased image is given, we could estimate
the illumination and dynamically determine the
illumination-dependent transformation matrix to
correct the color-biased image. Our evaluation
shows that the proposed PCA-CLSE model can
efficiently reduce the color biases.

1. PROBLEM STATEMENT

1.1. Von-Kries diagonal model
\Von-Kries diagonal model for color prediction
from illumination B to illumination A could be
generalized as
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where (Ra,Ga,Ba) and (Rp,Gg,Bg) are the color
vectors of the same surface reflectance under
different lighting. The coefficients, C, Cy C, on
the other hand, define the color ratios of three
color channels independently. Here, for the ith
color channel, the ratio is chosen as the ratio of
the ith illumination color L; obtained from a
white surface under the two illuminations A and

B:
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In principle, von-Kries model assumes the ratios,
C,, Cgy, Cp, which are used for color correction
under the two illuminations, are same as the
color ratios of a white surface.

However, the von-Kires diagonal model is
not a perfect color prediction model. This can be
theoretically understood by considering the
formation process of an image. For the image
formation, the relation among the color vectors
f=(R,G,B)", the illumination spectrum e(A ), the
surface spectral reflectance function r(A ), and
the sensor sensitivity function s;(A ) of the ith
color channel is represented as

f = Le(/l)r(ﬂ)si (A)d A €))

whereA indicates spectrum and the integral is
taken over the visible spectrum w. Next, the
ratio of the ith color response of a surface under
two illuminations is then calculated by
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In general, r(A ) could not be pull out from the
integral and could not be cancelled. That is

fiA J.weA()“)Si (A)dAa LiA,white . (5)
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Therefore, the color ratio is not a constant for
different surfaces with different colors and von
Kries diagonal model only can only work as an
approximation for color prediction. Note that in
(5), we define the illumination colors L as
the response of the ith color channel of a white
surface. This is same as the definition used in

[3].

Sometimes, von-Kries diagonal model
may work well with some kinds of sensors,
especially for those sensors with very sharp
sensitivities. This could be easily understood
based on (4). While the sensor has an extremely
narrow-band sensitivity function, for example
the Dirac delta function, r(A ) could be pull out
from the integral and the color ratio in (4)
become a constant for different surfaces. Under



the condition, the von-Kries diagonal model
becomes applicable.

However, as reported by Finlayson et al.
[6], the von-Kries diagonal model could not
provide accurate color prediction in most cases
and the approximation may produce significant
color biases. To overcome the problem, Barnard
et al. proposed the sensor sharpening method in
[7], which maps the color responses into a new
color space where the sensor is sharper by a
fixed linear transform T. The main technique
issue in sensor sharpening is how to find the
optimal linear transform T. Focusing on this
issue, in [8], Xiao et al. discussed the preferred
color spaces for white balance.

Even though the sensor sharpening method
could be applied to improve the accuracy of
color prediction, the optimal transform T for
sensor sharpening is pre-learned and
illumination-independent. In this paper, we
find the color biases, which are the difference
between the true colors and the predicted colors,
are dependent on illumination. Instead of
applying a fixed linear transform T, we look for
an illumination-adaptive transform to
dynamically correct the color biases.

1.2. Color biases

In this section, we use an experiment to
understand how color biases or color prediction
errors happen if the von- Kries model is used. To
conduct the experiment, we use the Simon
Fraser University color dataset [9], which
contains 287 different illumination spectrums,
1995 surface reflectance functions, and 3 sensor
sensitivity functions for different color channels.

In the experiment, to demonstrate the color
biases, we randomly select illumination
spectrums and 24 surface reflectance functions
from the color dataset. By using the sensor
sensitivity functions to measure the color
responses by equation (3), we could synthesize
our standard images. A standard image has 24
grids under a uniform illumination. In Figure 1(a)
and 1(b) we show two standard images under
illumination A and illumination B separately.
Note that the 24 surface patches used in the two

standard images are same in order to
demonstrate the color difference caused by the
environmental lighting. Next, we use the

von-Kries model to predict the color change
from illumination B to illumination A. Assume
we could correctly estimate the illumination
colors A" and 2, the coefficients, C,
C,, Cy, of the von-Krie diagonal model could be

determined by equation (2). In Figure 1(c), we
could see the color correction result by using the
diagonal model As we can see, Figure 1(a) and
Figure 1(c) have close color appearance and the
color difference caused by the environmental
lighting is greatly removed.

(b)

Fig. 1: The standard images (a) under illuminate A and
(b) under illuminate B. (c) The color correction result
from illumination B to illumination A based on
von-Kries model.

However, we could also find that there exist
color biases, or say prediction error, between
Figure 1(a) and Figure 1(c). For example, the
yellow color at the bottom row. To measure the
color difference, we use the angular error (AE)
between the predicted color vector P and the
true color vector T . That is

AE =cos*(P-T). (6)

In Table 1, the angular errors between Figure 1(a)
and 1(c) are listed for reference. Therefore, how
to reduce the color biases becomes our system
goal. In this paper, we proposed a new method to
dynamically reduce the prediction error based on
the estimation of illumination and a learning
process.

Table 1: Angular errors between the true colors and
the colors predicted by the von-Kries diagonal model
for the tested images in Figure 1.



8.6093°|0.2248°| 0.0203° | 1.6505° | 2.8694° | 3.1326°

3.4104°|0.0325°| 0.1920° | 5.0963° | 8.4276° | 2.4559°
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2. WHITE BALANCE BASED ON A

NON-DIAGONAL MODEL

In this paper, we proposed a non-diagonal
model for white balance. Here, to improve the
accuracy of the von-Kries diagonal model for
color prediction, we proposed to use a full 3x3
non-diagonal transformation matrix as a
replacement. The non-diagonal model has more
degrees of freedom and hence would be more
accurate. However, it is difficult to determine the
9 parameters of the non-diagonal model due to
the lack of information. In general, only 3
degrees of freedom could be determined if the
illumination information is available. To
overcome the problem, the proposed system
relied on an offline learning process to gain extra
information. The basic idea is to train and record
the correspondence between environmental
illumination and its optimal transformation
matrix in an efficient manner. While the
illumination is estimated, we could dynamically
determine the transformation matrix from the
trained model. Hence, even thought we only
have illumination information for 3 degrees of
freedom, we could also adopt a non-diagonal
model to boost the accuracy.

Color Biased Image
l Non-diagonal
Transformation

[lluminant

Estimation l

Dataset

Color Correction _ PCA-Based Model

Learning

Color corrected Image

Fig. 2: The system flow of the proposed white
balance method based on a non-diagonal color
prediction model.

The system flow of the proposed method
is shown in the Figure 2, which is composed of a
testing phase and a learning phase. In the testing
phase, our system estimates the color of the
environmental illumination. With illumination
estimation, a transformation matrix is selected
from the offline learned model for color

correction. In the learning phase, lots of
transformation matrices under various lighting
condition are collected for training. In our
system, we find the transformation matrices
collected for training play a crucial step. In this
paper, we proposed a new method for sample
collection to replace the conventional method
proposed in [4]. With the proposed method, we
ensure the training samples are specific selected
for white balance. Hence, the trained model is
more accurate. To train the model, PCA is
utilized to extract a compact subspace of
transformation matrix. This learned subspace
provides a systematic way to record the mapping
between the environmental illumination and its
optimal non-diagonal transformation and forms
the trained model. Below, we describe the each
step of our system in detail.

2.1. lllumination estimation

Illumination estimation is an important step
toward white balance. To estimate the color of
illumination, some assumptions should be made.
Until now, most of systems use the gray-world
hypothesis or the gray-edge hypothesis for
illumination estimation. In this paper, we use
both methods to estimate illumination in our
experiments. Below we explain the estimation
process separately.

2.1.1. Gray-world hypothesis

In [10], the author proposed the grey-world
hypothesis. For gray-world hypothesis, the basic
assumption is that the average of reflectance in
the scene is achromatic. This could be expressed
as

J' r(,x)dx e @)
J dx

In (7), k is some constant and r(A ,x) is the
spectrum response of the reflectance at location
x. If a color image is denoted as f(x), the
intensity average of the ith color channel over
the spatial coordinate could be calculated by

f.(x)d
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Here, ie {r,g,b} and L; is the illumination color
of the ith color channel as before. Form (8), the
illumination color L; could be estimated by

d ]e(l)si(i) di=k-1, ®)



averaging the given image f(x).

Recently, the authors in [11] proposed a
generalized formulation for white balance on the
Minkowski norm. In their formulation, the
illumination color is computed by

M(M] o

jdx

It could be found that if p=1, the equation is
equal to the gray-world assumption.

2.1.2. Gray-edge hypothesis

As an alternative to the gray-world hypothesis,
Weijer and Gevers [12] propose the gray-edge
hypothesis. The fundamental assumption is that
the average derivative of the reflectance of
surfaces is achromatic. Note that the derivative
could be interpreted as the edge intensity. Based
on the assumption, we have

Jle@xldx o)

jdx

In (10), the subscript x indicates the spatial
derivative. If the spatial derivative of a color
image is denoted as f,(x), the average derivative
intensity of the ith color channel over the spatial
coordinate is given by

[It0omx - 1 J [ e@nzn]s(2) da dx

=J‘w[.[ %W]e(i)si (A)da=k-L (12)

Therefore, based on the gray-edge assumption,
the illumination color L; could be estimated by
averaging the derivative intensity of the given
image f,(x). As the gray-world hypothesis, the
generalized gray-edge hypothesis on the
Minkowski norm is represented as

X

2.2. PCA-based model learning
A non-diagonal 3x3 transformation matrix Mga
for color prediction from illumination B to

illumination A could be expressed as

R, C, C R R
GA = C21 sz C23 GB =Mg, GB '
B, C C, Cs|| B B

(13)

where (Ra,Ga,Ba) and (Rg,Gg,Bg) are the color
vector of the same surface reflectance under two
different lighting. To find the optimal
transformation matrix, there are 9 parameters of
Mga to be determined. As known from the
previous  section, illumination estimation
provides only 3-parameter information. In order
to use the full 3x3 model, we look for learning
methods to extract information from training
datasets.

Among the previous works, we found the
method proposed by Funt and Jiang [4] is
applicable. In [4], the authors proposed to use
principle component analysis (PCA) to analyze
the 3x3 linear transformations that model
illumination change. In detail, if we reshape a
3x3 matrix as a vector, each matrix is
represented by a point in a 9-dimensional space.
Since the transformation matrix is independent
on the object reflectance and only models the
illumination change, a reasonable hypothesis
used in [4] is to assume that the underlying
distribution of all possible transformation
matrices are embedded in a 3-dimensional
subspace. To verify the hypothesis and learn the
3-dimensional subspace, PCA is applied to
analyze the space of the transformation matrix.
One major difference between the proposed
method and the method in [4] is how to collect
proper transformation matrices for PCA. To be
clear, we will detail the difference in section 3.4.

In our system, we collect N transformation
matrices into a training set {M;}iz1-n. Suppose
M, is the mean matrix of the training set
{M;}i=1-n- By subtracting the mean matrix My
and rearranging the N matrices into a N-by-9
data matrix, we get a data matrix D,,, with zero
empirical mean, for principle component
analysis. Here, each row of D, indicates the 9
elements of a 3-by-3 transformation matrix after
subtracting M, Next, we calculate the
covariance matrix of D,, and denote it as Cy,.
After finding the eigenvectors and eigenvalues
of C,,, we may find most of the training samples
are compactly concentrated in a 3-dimentional
subspace.

To build the learning model for the
selection of illumination transformation, the
three eigenvectors with the top 3 eigenvalues are
chose. By reshaping the three eigenvectors back
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to 3-by-3 matrices, we finally obtain three basis
matrices Z;, Z,, and Z3. The set Z={Z;,Z,,Z5} and
the mean matrix M, form a compact subspace of
the illumination transformation matrix. We then
defined the subspace as the trained model. With
the model, each illumination transformation
matrix M could be well approximated by

M ~aZ +a,Z,+a,Z,+M =T (a,,8,,8;;Z,M,). (14)

That is, the non-diagonal illumination
transformation is determined by three parameters
{a;,a»,a3} instead of 9 parameters. Also in (14),
we denote the trained model as T(ay,a,a3;Z,My).
With  T(aj,aasZ,Mg), if the estimated
illumination of a tested image can provide
3-parameter information to determine {a;,a,,as},
the matrix M., for image color correction could
be selected. Therefore, in concept, the model
T(a1,@2,83;Z,Mp) serves as a mapping function
between the estimated illumination and the
transformation matrix.

2.3. Color correction

Once the illumination is estimated and the model
of illumination transformation is learned, our
system would dynamically select the optimal
transformation matrix for color correction. The
policy is to select a transformation matrix to
correct the color shift of white patches so that
the white balance requirement is met. Therefore,
if we denote the estimated illumination of a
tested image as L‘:(Lr,Lg,Lb) and the standard
white color as L"=(255, 255, 2555), the color
correction matrix we select for white balance
should satisfy L"=M.L' With the model
T(ag,a2,a3,Z,Mp), we can derive the following
equation.

LY = (a,Z, +a,Z,+a,Z,+M )L

ZOLr z,r z,@L|[a
=1Z,QL Z,L Z,)VL||a,|+M,L. (15)
Z(L z,3)L z©OL]||a,

Here, Z;(j) indicates the jth row of the basis
matrix Z;. Since the illumination L' has been
estimated, the mean matrix M, have been
determined, and the basis matrix Z; have been
learned, the three parameters {a;,a,,as} could be
directly calculated. With {a;,a,,a:} the optimal
transformation matrix M. could be selected.
Finally, with the selected M, any color pixel of
the tested image is corrected by equation (13) in
order to obtain the color-corrected image with
white balance.

2.4. The collection of training samples

Before this section, we focus on model learning
and how to use the trained model for white
balance. However, to determine the subspace of
illumination transformation, lots of samples of
transformation ~ matrices  under  various
illumination pairs should be collected for
training. In our system, we found that how to
properly select training samples is much
important. Without using the training dataset
which is specifically collected for white balance,
the trained model may be biased. Until now, few
relative researches focus on this sample selection
issue. Thus, in this paper, for image white
balance, we proposed a new method to select
training samples

In [4], the author proposed to select the
sample of illumination transformation in the
least square error (LSE) sense. To get a matrix
sample of illumination transformation, in their
method, they randomly choose two illuminations,
named as A and B, from the Simon Fraser
University color dataset. The color responses of
1995 surface reflectance under the two
illuminations are measured based on the
equation (3) to build two color sets. The optimal
transformation matrix Mga s provides the least
square mapping error between the two color set
is calculated and then selected as one training
sample. This could be expressed as

1995

MBA‘LSE =arg mrviln ;pi,A_MCi,B |2 . (16)

In (16), C;; is the ith color vector in the jth color
sets. We should note that the optimal
transformation matrix Mga s under the least
square error constraints does not make
Cia=MgaCig for any color vector pair but
provide a best compromise solution among all
color vector pairs.

However, for the application of white
balance, the sample selection policy in [4]
should be further modified. Essentially, the
method is not suitable for white balance. To
explain the reason, we consider the color
correction step in our system. The important goal
is to dynamically determine the transformation
matrix based on the illumination color L', the
canonical illumination color L, and the white
balance constraint L"=ML". However, the
optimal least-square-error solution My, se, which
is the ideal matrix we prefer to select, does not
meet the white balance constraint. That is
LY # MtW,LSEL‘. Therefore, the matrix Mg we
select for color correction is away from the ideal
solution My, se. Hence, the sample selection



policy in [4] should be further modified.

In this paper, to modify the selection
method, we redefine the ideal matrix for
illumination transformation. Here, instead of
minimizing the color prediction error for all
color vectors, an ideal transformation matrix in
our definition should minimize the color
prediction error and satisfy the white balance
requirement. With this definition, we proposed
to select the transformation sample from
illuminations A to illuminations B by using a
constrained least square error (CLSE), defined as

1995

M sacLse = arg mrviln Zpi,A - MCi,B |2 . (17)
i=1

subject to L* = ML®

In (17), L* and L® are the color vectors of
illuminations A and B. Here, to solve this
constrained optimization problem, we use the
Lagrange multiplier method [13].

Next, We collect a training set {M; cLse}i=1-n
in the CLSE sense and apply PCA to analyze the
embedded subspace. By verifying the
eigenvalues, we find that most samples within
the training set could be 99% approximated by
using three eigenvectors. Based on this result,
we could ideally assume that the suitable color
correction matrix for illumination transformation
from any B to A is within a learnable
3-dimensional subspace. Since the matrices
inside this new model attempt to make
L®=Mga cLseL”, we could apply the white balance
constraint to select the transformation matrix
inside the new model with less model selection
error.

3. SYSTEM SUMMARIZATION
3.1. System implementation
The implementation steps of the proposed
system are summarized as follows.
(1) The learning phase:

A.Collect N training samples {M}iz1-y in
the CLSE sense defined in (17).

B. Apply PCA to the training sample set
{M}i=1-x and learn the illumination
transformation model TcLsSE
(a1,82,83,Z,My).

(2) The testing phase:

A.Given a color-biased image, we estimate
the color vector L' of illumination based
on the gray-world hypothesis by using (9)
or based on the gray-edge hypothesis by

using (12).
B. According the estimated illumination L'
and the trained model

Tcrse(ag,az,a3,Z,Mp), we calculate the
three parameters {a;,a,,as} by using (15)
and determine the color correction matrix
Meccuse by using (14).

C.With McccLse, the color vector of each
pixel in the tested image is corrected by
equation (13) in order to obtain the
color-corrected image.

3.2 Symbol Notation
In Table 2, we summary the symbols used in the
paper.

Table 2: Symbol Notation.

Symbol | Description

The optimal LSE color correction matrix
for illumination pair (A,B).

MBA,LSE

Mgacise | The optimal CLSE color correction matrix
for illumination pair  (A,B)..

Tise The LSE 3-dimensional matrix model

Telse The CLSE 3-dimensional matrix model

The color correction matrix selected from
T.se based on the white balance constraint.

Mcc,LSE

The color correction matrix selected from
Tcise based on  the white balance
constraint.

Mcc,CLSE

The von-Kries diagonal color correction
matrix.

Mcc,diag

4. EXPERIMENTS

In our experiment, the data is from the Simon
Fraser University color dataset [9], which
contains 287 different illumination spectrums
and 1995 surface reflectance functions. Our
experiments have three parts. In the first part, we
verify that the distribution of color correction
transformation matrices is roughly embedded in
a 3-dimensional subspace. In the second part, we
evaluate the performance of three color
prediction models, including the von-Kries
model M giag, the PCA-LSE non-diagonal model
Mccse, and the PCA-CLSE non-diagonal model
McccLse: Here, to be discriminative, PCA-LSE
and PCA-CLSE are used to represent PCA with
LSE samples and CLSE samples correspondingly.
In the third part, we demonstrate the
performance of white balance based on the three
color prediction models by using many
color-biased images.

4.1  Verification of  Three-Dimension
Hypothesis

In this subsection, we verify the hypothesis that
both the distribution of LSE matrix samples and
the distribution of CLSE matrix samples could
be well approximated by 3-dimensional

subspaces. Note the two subspaces are different.




Here, we present the covered data energy as a
function of the dimension number of the PCA
model in the Figure 3. As we could see from the
figure, for both the PCA-LSE and PCA-CLSE
cases, onlt three main eigenvectors are enough to
cover more than 99% data energy of the training
dataset.
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Fig. 3: The percentage of covered data energy as a function

the dimension number of the PCA model.

4.2 Model Comparison

To evaluate the performance of a color
prediction model M, we use the color dataset [9]
to synthesize color sets {C;.} and {C;g} under
an illumination pair (A,B). Each set has 1995
color response vectors. The performance of M is
then determined by measuring the average L2
norm error. That is

1995
E_M=)Y[C,,—MC,,[* /1995

i=1

(18)

In (18), E_M indicates the error of model. In our
experiments, we compare the performance of
matrices Mgase, MeacLser Mccises Meccuse, and
Mccdiag- It should be noted that only Mcse,
Mcccises and M giag COuld be determined and
used in the testing phase. However, the
performance of Mgaseand Mgacise could serve
as the optimal solution bounds for performance
evaluation.

Basically, in least square error sense, Mga s IS
the optimal solution. If we add the illumination
constraint L®=ML"* as an extra condition,
MgacLse becomes the best solution. In Table 3,
we provide the color prediction performance of
different transformation matrices. In our
experiments, we have tested more than 300
illumination pairs though only the details of 9
illumination pairs are reported in the table. Here,
we could find the Mga e is the best solution.
However, since we rely on the illumination
constraint LB=ML"* to dynamically select the
transformation matrix in the testing phase, the

best solution that we could and should approach
iS Mgpacise. Note that under the constraint
LB=ML", MgacLse always outperforms matrices
Mce Lses Meccuses and M giag: AlSO, since Mec o se
is selected to approach Mgacise, Mcccise has
better prediction performance than Mg se and
Mccgiage  Furthermore,  without using the
information from learning process, the diagonal
model M giag l0Ses some prediction accuracy
comparing with Mg cise and M se.

Table 3: The average L2 norm error of color
prediction by using different matrices under different
illumination pairs. Here, “Pair_i” represents the ith
illumination pair. “Avg” is the average results of all
illumination pairs.

E_MBA,LSE E_MBA,CLSE E_MCC,LSE E_Mcc,CLSE E_Mcc‘diag

Pair_1|66.5749 | 80.9645 | 88.9434 | 88.4121 |136.5637

Pair_2|92.8401 | 96.8588 |106.0871|105.6406|175.8792

pﬁir_S 85.3215 | 88.5303 |100.4778| 98.4465 |128.2589

Pair_4|128.8683|136.1685|151.4551|148.8011|198.7618

Pair_5| 45.6411 | 49.6539 | 65.8880 | 63.3145 | 70.4688

Pair_6|87.9820 |115.4584|132.3479|129.7332|176.5549

Pair_7| 92.810 |120.2660|138.4639|135.5461|184.8110

Pair_8|128.2839|155.3272|168.2428|165.9508|195.8254

Pair_9|73.7972 | 76.3346 | 88.1190 | 87.0840 |117.1466

Avg [97.0286 | 110.115 |121.1579|118.9739(157.9720

Furthermore, it is worth to discuss the
performance of Mg se and Mg cise- In the
original design, M se is selected to approach
the LSE optimal solution Mga e, While Mga ¢ se
is selected to approach the CLSE optimal
solution Mgacise. Here, we define model
selection error as the difference between the
selected matrix and the target matrix. A major
reason that causes the model selection error is
the use of 3-dimentional approximation. In
general, the optimal solution is close but not
inside the trained subspace. The approximation
error therefore generates the model selection
error. In order to understand the model selection
error, in Table 4, we measure the average color
prediction difference Mg,_M+,, Of the selected
matrix Mge and the target matrix M+, over 1995
color response vectors. That is

1995
Mgy _ My, =Y Mg, C, —M_,C, [ /1995. (19)
i=1
In Table 4, we find the model selection error
between MCC,CLSE and MBA,CLSE is smaller than
the error between M. se and Mgase. This is
because, for the LSE case, not only the
approximation error but also the improper use of
the white balance constraint causes the model
selection error. In contrast, for the CLSE case,



only the approximation error affects the model
selection error. If the approximation error goes
to zero, the model selection error will approach
zero, and Mg cise Will almost be equal to

I\/lBA,CLSE-

Table 4: The model selection error Mge_ My, between
the selected matrix Mg and the target matrix My,

Mecise_Meaise Meecise_Meacise

Pair_1 22.3685 7.44

Pair_2 13.2470 8.7818
Pair_3 15.1563 9.9162
Pair_4 22.5868 12.6326
Pair_5 20.2469 13.6605
Pair_6 44,3659 14.2748
Pair_7 45.6539 15.2802
Pair_8 39.9589 10.6236
Pair_9 14.3218 10.7494

Avg 24.1293 8.8587

Finally, to compare with the von-Kries
model, we test the PCA-LSE non-diagonal model
and the PCA-CLSE non-diagonal model on the
color prediction experiment, which is mentioned
in the Figure 1 and Table 1. From, Table 1, Table
5, and Table 6, we may find that the PCA-CLSE
non-diagonal model provides better color
prediction in most patches.

Table 5: Angular errors between the true colors and
the colors predicted by the PCA-LSE non-diagonal
model for the tested images in Figure 1.

3.7265° | 0.8212° | 0.0693° |0.9929° | 0.5656° |2.2217°

2.2059° | 0.4539° |0.1428° |1.0245° |4.2607° |0.4962°

3.7469° | 0.2856" |1.2769° |1.5191° |0.8395° |1.2703°

0.6250° | 0.1071° |1.0234" |1.8744° |2.1400° |1.4873°

Table 6: Angular errors between the true colors and
the colors predicted by the PCA-CLSE non-diagonal
model for the tested images in Figure 1.

3.7530° [0.7924° |0.0689° |0.9460° |0.2667° |1.8929°

1.8213° |0.4430° |0.1316° |0.9831° |4.2553° |0.4487°

3.6846° [0.2792° |1.3250° |1.2585° |0.6350° |1.0578°

0.7440° [0.1073° |0.9284° |1.5240° [2.1706 |1.1943°

4.3 White Balance Results

In this subsection, we use some color-based
images to evaluate the proposed white balance
system. For each tested image, we estimate the
illumination based on the gray-world hypothesis
and the gray-edge hypothesis. The true

illumination is also provided for comparison.
Next, based on the proposed system, we
dynamically select the best PCA-CLSE
non-diagonal model from the trained model for
color correction. In Figure 4 and 5, we show the
white balance results. In Table 7, we show the
illumination estimation of the two tested images.
Here, we may find the accuracy of illumination
estimation is highly relative to the system
performance.
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Fig. 4: (a) A color-biased image and its white balance results
based on (b) true illumination, (c) gray-world illumination
estimation, and (d) gray-edge illumination estimation with
PCA-CLSE color correction.

(©

Fig. 5: (a) A color-biased image and its white balance results
based on (b) true illumination, (c) gray-world illumination
estimation, and (d) gray-edge illumination estimation with
PCA-CLSE color correction.

Table 7: Illumination estimation based on gray-world
(IM_gw) and gray-edge (lll_gg) and their angular
errors (AE) comparing with the true illumination

(I I I_True)-

Image ”I_True ”I_GW ”I_GE AE_GwAE_GE

Fig. 4((0.18,0.31,0.93)((0.17,0.31,0.94)|(0.21,0.33,0.92){ 0.286 ° [1.985°

Fig. 5/(0.26,0.39,0.88){(0.33,0.43,0.84)(0.31,0.42,0.86)| 5.452° | 3.472°




5. CONCLUSION

In this paper, we present a non-diagonal model
for color correction, which aimed to minimize
the color bias while keeping the balance of white
color in a tested image. The non-diagonal model
provides more degrees of freedom and better
color prediction. However, the challenge of
using non-diagonal model to replace the
diagonal model is more information is required
in order to determine the optimal 3-by-3
transformation for color correction. In our
system, we proposed to rely on the PCA-based
learning process to gain extra information. By
utilizing PCA to extract a compact subspace of
illumination transformation matrix, we could
record the mapping of environmental
illumination and its optimal non-diagonal
transformation. With the mapping model and the
estimation of illumination, we can dynamically
select the best matrix to correct the color biases
and get a better white balance result.

Even though the learning process could
provide information, the accuracy of the
information is highly dependent on the training
samples. Hence, we also proposed a sample
selection method, which is specific designed for
white balance algorithms.

In this paper, we find that we could have
better color prediction through the learning
process. In the future, we attempt to gain more
information based on learning methods so that
we could provide better color correction for the
current white balance system. In addition, our

future extension will also focus on the
improvement of the accuracy.
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