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Abstract 
White balance is an algorithm proposed to 

mimic the color constancy mechanism of human 

perception. However, as shown by its name, 

current white balance algorithms only promise to 

correct the color shift of gray tone to a correct 

position; for other color values, white balance 

algorithms process them as gray tone and 

therefore produce undesired color bias. To 

improve the color prediction of white balance 

algorithms, in this paper, we propose a 

3-parameter non-diagonal model, named as 

PCA-CLSE, for white balance. Unlike many 

previous researches which use the von-Kries 

diagonal model for color prediction, we 

proposed to apply a non-diagonal model for 

color correction which aimed to minimize the 

color biases while keeping the balance of white 

color. In our method, to reduce the color biases, 

we proposed a PCA-based training method to 

gain extra information for analysis and built a 

mapping model between illumination and 

non-diagonal transformation matrices. While a 

color-biased image is given, we could estimate 

the illumination and dynamically determine the 

illumination-dependent transformation matrix to 

correct the color-biased image. Our evaluation 

shows that the proposed PCA-CLSE model can 

efficiently reduce the color biases.  

 

1. PROBLEM STATEMENT 

 1.1. Von-Kries diagonal model 

Von-Kries diagonal model for color prediction 

from illumination B to illumination A could be 

generalized as  
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where (RA,GA,BA) and (RB,GB,BB) are the color 

vectors of the same surface reflectance under 

different lighting. The coefficients, Cr, Cg, Cb, on 

the other hand, define the color ratios of three 

color channels independently.  Here, for the ith 

color channel, the ratio is chosen as the ratio of 

the ith illumination color Li obtained from a 

white surface under the two illuminations A and 

B: 

,

,

A white

i
i B white

i

L
C

L
 .              (2) 

In principle, von-Kries model assumes the ratios, 

Cr, Cg, Cb, which are used for color correction 

under the two illuminations, are same as the 

color ratios of a white surface.  

However, the von-Kires diagonal model is 

not a perfect color prediction model. This can be 

theoretically understood by considering the 

formation process of an image. For the image 

formation, the relation among the color vectors 

f=(R,G,B)
T
, the illumination spectrum e(λ ), the 

surface spectral reflectance function r(λ ), and 

the sensor sensitivity function si(λ ) of the ith 

color channel is represented as  
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whereλ indicates spectrum and the integral is 

taken over the visible spectrum ω. Next, the 

ratio of the ith color response of a surface under 

two illuminations is then calculated by 
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In general, r(λ ) could not be pull out from the 

integral and could not be cancelled. That is 
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Therefore, the color ratio is not a constant for 

different surfaces with different colors and von 

Kries diagonal model only can only work as an 

approximation for color prediction. Note that in 

(5), we define the illumination colors white

iL  as 

the response of the ith color channel of a white 

surface. This is same as the definition used in 

[3]. 

Sometimes, von-Kries diagonal model 

may work well with some kinds of sensors, 

especially for those sensors with very sharp 

sensitivities. This could be easily understood 

based on (4). While the sensor has an extremely 

narrow-band sensitivity function, for example 

the Dirac delta function, r(λ ) could be pull out 

from the integral and the color ratio in (4) 

become a constant for different surfaces. Under 
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the condition, the von-Kries diagonal model 

becomes applicable.  

However, as reported by Finlayson et al. 

[6], the von-Kries diagonal model could not 

provide accurate color prediction in most cases 

and the approximation may produce significant 

color biases. To overcome the problem, Barnard 

et al. proposed the sensor sharpening method in 

[7], which maps the color responses into a new 

color space where the sensor is sharper by a 

fixed linear transform T. The main technique 

issue in sensor sharpening is how to find the 

optimal linear transform T. Focusing on this 

issue, in [8], Xiao et al. discussed the preferred 

color spaces for white balance.   

Even though the sensor sharpening method 

could be applied to improve the accuracy of 

color prediction, the optimal transform T for 

senso r  sha rp en ing  i s  p r e - l ea rned  and 

illumination-independent.  In this paper, we 

find the color biases, which are the difference 

between the true colors and the predicted colors, 

are dependent on illumination. Instead of 

applying a fixed linear transform T, we look for 

an i l l uminat io n -adap t ive  t rans form to 

d ynamica l ly  cor r ec t  t he  co lor  b i ases . 

 

1.2. Color biases  

In this section, we use an experiment to 

understand how color biases or color prediction 

errors happen if the von- Kries model is used. To 

conduct the experiment, we use the Simon 

Fraser University color dataset [9], which 

contains 287 different illumination spectrums, 

1995 surface reflectance functions, and 3 sensor 

sensitivity functions for different color channels.    

In the experiment, to demonstrate the color 

biases, we randomly select illumination 

spectrums and 24 surface reflectance functions 

from the color dataset. By using the sensor 

sensitivity functions to measure the color 

responses by equation (3), we could synthesize 

our standard images. A standard image has 24 

grids under a uniform illumination. In Figure 1(a) 

and 1(b) we show two standard images under 

illumination A and illumination B separately. 

Note that the 24 surface patches used in the two 

standard images are same in order to 

demonstrate the color difference caused by the 

environmental lighting. Next, we use the 

von-Kries model to predict the color change 

from illumination B to illumination A. Assume 

we could correctly estimate the illumination 

colors ,A white

iL  and ,B white

iL , the coefficients, Cr, 

Cg, Cb, of the von-Krie diagonal model could be 

determined by equation (2). In Figure 1(c), we 

could see the color correction result by using the 

diagonal model As we can see, Figure 1(a) and 

Figure 1(c) have close color appearance and the 

color difference caused by the environmental 

lighting is greatly removed. 

(a) 

 

 

(b) 

 
 

(c) 

 

Fig. 1: The standard images (a) under illuminate A and 

(b) under illuminate B. (c) The color correction result 

from illumination B to illumination A based on 

von-Kries model. 

However, we could also find that there exist 

color biases, or say prediction error, between 

Figure 1(a) and Figure 1(c). For example, the 

yellow color at the bottom row. To measure the 

color difference, we use the angular error (AE) 

between the predicted color vector P  and the 

true color vector T . That is  

1cos ( )AE  P T .               (6) 

In Table 1, the angular errors between Figure 1(a) 

and 1(c) are listed for reference. Therefore, how 

to reduce the color biases becomes our system 

goal. In this paper, we proposed a new method to 

dynamically reduce the prediction error based on 

the estimation of illumination and a learning 

process. 

 

Table 1: Angular errors between the true colors and 

the colors predicted by the von-Kries diagonal model 

for the tested images in Figure 1. 
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8.60930 0.22480 0.02030 1.65050 2.86940 3.13260 

3.41040 0.03250 0.19200 5.09630 8.42760 2.45590 

8.29980 0.02370 2.55480 2.63430 2.82030 1.93610 

2.92330 0.09580 2.76880 5.44920 6.31840 5.29110 

 

2. WHITE BALANCE BASED ON A 

NON-DIAGONAL MODEL 
In this paper, we proposed a non-diagonal 

model for white balance. Here, to improve the 

accuracy of the von-Kries diagonal model for 

color prediction, we proposed to use a full 3x3 

non-diagonal transformation matrix as a 

replacement. The non-diagonal model has more 

degrees of freedom and hence would be more 

accurate. However, it is difficult to determine the 

9 parameters of the non-diagonal model due to 

the lack of information. In general, only 3 

degrees of freedom could be determined if the 

illumination information is available. To 

overcome the problem, the proposed system 

relied on an offline learning process to gain extra 

information. The basic idea is to train and record 

the correspondence between environmental 

illumination and its optimal transformation 

matrix in an efficient manner. While the 

illumination is estimated, we could dynamically 

determine the transformation matrix from the 

trained model. Hence, even thought we only 

have illumination information for 3 degrees of 

freedom, we could also adopt a non-diagonal 

model to boost the accuracy. 

 

Fig. 2: The system flow of the proposed white 

balance method based on a non-diagonal color 

prediction model.  

The system flow of the proposed method 

is shown in the Figure 2, which is composed of a 

testing phase and a learning phase. In the testing 

phase, our system estimates the color of the 

environmental illumination. With illumination 

estimation, a transformation matrix is selected 

from the offline learned model for color 

correction. In the learning phase,   lots of 

transformation matrices under various lighting 

condition are collected for training. In our 

system, we find the transformation matrices 

collected for training play a crucial step. In this 

paper, we proposed a new method for sample 

collection to replace the conventional method 

proposed in [4]. With the proposed method, we 

ensure the training samples are specific selected 

for white balance. Hence, the trained model is 

more accurate. To train the model, PCA is 

utilized to extract a compact subspace of 

transformation matrix. This learned subspace 

provides a systematic way to record the mapping 

between the environmental illumination and its 

optimal non-diagonal transformation and forms 

the trained model. Below, we describe the each 

step of our system in detail. 

 

2.1. Illumination estimation 

Illumination estimation is an important step 

toward white balance. To estimate the color of 

illumination, some assumptions should be made. 

Until now, most of systems use the gray-world 

hypothesis or the gray-edge hypothesis for 

illumination estimation. In this paper, we use 

both methods to estimate illumination in our 

experiments. Below we explain the estimation 

process separately. 

 

2.1.1. Gray-world hypothesis 

In [10], the author proposed the grey-world 

hypothesis. For gray-world hypothesis, the basic 

assumption is that the average of reflectance in 

the scene is achromatic. This could be expressed 

as 
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In (7), k is some constant and r(λ ,x) is the 

spectrum response of the reflectance at location 

x. If a color image is denoted as f(x), the 

intensity average of the ith color channel over 

the spatial coordinate could be calculated by  
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Here, i{r,g,b} and Li is the illumination color 

of the ith color channel as before. Form (8), the 

illumination color Li could be estimated by 
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averaging the given image f(x).  

Recently, the authors in [11] proposed a 

generalized formulation for white balance on the 

Minkowski norm. In their formulation, the 

illumination color is computed by 

  

1

( )
.                (9)

p p
i

i

f x  dx
k L

dx

 
  
 
 
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It could be found that if p=1, the equation is 

equal to the gray-world assumption. 

 

2.1.2. Gray-edge hypothesis 

As an alternative to the gray-world hypothesis, 

Weijer and Gevers [12] propose the gray-edge 

hypothesis. The fundamental assumption is that 

the average derivative of the reflectance of 

surfaces is achromatic. Note that the derivative 

could be interpreted as the edge intensity. Based 

on the assumption, we have  
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In (10), the subscript x indicates the spatial 

derivative. If the spatial derivative of a color 

image is denoted as fx(x), the average derivative 

intensity of the ith color channel over the spatial 

coordinate is given by 

 ,
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Therefore, based on the gray-edge assumption, 

the illumination color Li could be estimated by 

averaging the derivative intensity of the given 

image fx(x). As the gray-world hypothesis, the 

generalized gray-edge hypothesis on the 

Minkowski norm is represented as  

 

1

,| ( ) |
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2.2. PCA-based model learning 

A non-diagonal 3x3 transformation matrix MBA 

for color prediction from illumination B to 

illumination A could be expressed as  
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,  (13) 

where (RA,GA,BA) and (RB,GB,BB) are the color 

vector of the same surface reflectance under two 

different lighting. To find the optimal 

transformation matrix, there are 9 parameters of 

MBA to be determined. As known from the 

previous section, illumination estimation 

provides only 3-parameter information. In order 

to use the full 3x3 model, we look for learning 

methods to extract information from training 

datasets.  

Among the previous works, we found the 

method proposed by Funt and Jiang [4] is 

applicable. In [4], the authors proposed to use 

principle component analysis (PCA) to analyze 

the 3x3 linear transformations that model 

illumination change. In detail, if we reshape a 

3x3 matrix as a vector, each matrix is 

represented by a point in a 9-dimensional space. 

Since the transformation matrix is independent 

on the object reflectance and only models the 

illumination change, a reasonable hypothesis 

used in [4] is to assume that the underlying 

distribution of all possible transformation 

matrices are embedded in a 3-dimensional 

subspace. To verify the hypothesis and learn the 

3-dimensional subspace, PCA is applied to 

analyze the space of the transformation matrix. 

One major difference between the proposed 

method and the method in [4] is how to collect 

proper transformation matrices for PCA. To be 

clear, we will detail the difference in section 3.4. 

In our system, we collect N transformation 

matrices into a training set {Mi}i=1~N. Suppose 

M0 is the mean matrix of the training set 

{Mi}i=1~N. By subtracting the mean matrix M0 

and rearranging the N matrices into a N-by-9 

data matrix, we get a data matrix Dm, with zero 

empirical mean, for principle component 

analysis. Here, each row of Dm indicates the 9 

elements of a 3-by-3 transformation matrix after 

subtracting M0. Next, we calculate the 

covariance matrix of Dm and denote it as Cm. 

After finding the eigenvectors and eigenvalues 

of Cm, we may find most of the training samples 

are compactly concentrated in a 3-dimentional 

subspace.  

To build the learning model for the 

selection of illumination transformation, the 

three eigenvectors with the top 3 eigenvalues are 

chose. By reshaping the three eigenvectors back 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Empirical_mean
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to 3-by-3 matrices, we finally obtain three basis 

matrices Z1, Z2, and Z3. The set Z={Z1,Z2,Z3} and 

the mean matrix M0 form a compact subspace of 

the illumination transformation matrix. We then 

defined the subspace as the trained model. With 

the model, each illumination transformation 

matrix M could be well approximated by 

1 1 2 2 3 3 0 1 2 3 0+ + = ( , , ; , ).    (14)M a Z a Z a Z M T a a a M  Z

 

That is, the non-diagonal illumination 

transformation is determined by three parameters 

{a1,a2,a3} instead of 9 parameters. Also in (14), 

we denote the trained model as T(a1,a2,a3;Z,M0). 

With T(a1,a2,a3;Z,M0), if the estimated 

illumination of a tested image can provide 

3-parameter information to determine {a1,a2,a3}, 

the matrix Mcc for image color correction could 

be selected. Therefore, in concept, the model 

T(a1,a2,a3;Z,M0) serves as a mapping function 

between the estimated illumination and the 

transformation matrix. 

 

2.3. Color correction 

Once the illumination is estimated and the model 

of illumination transformation is learned, our 

system would dynamically select the optimal 

transformation matrix for color correction. The 

policy is to select a transformation matrix to 

correct the color shift of white patches so that 

the white balance requirement is met. Therefore, 

if we denote the estimated illumination of a 

tested image as L
t
=(Lr,Lg,Lb) and the standard 

white color as L
w
=(255, 255, 2555), the color 

correction matrix we select for white balance 

should satisfy L
w
=MccL

t
. With the model 

T(a1,a2,a3;Z,M0), we can derive the following 

equation. 

1 1 2 2 3 3 0

1 2 3 1

1 2 3 2 0

1 2 3 3

( + + )

(1) (1) (1)

 = (2) (2) (2)   + .           (15)

(3) (3) (3)
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Z L Z L Z L a M L
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 

   
   
   
     

 

Here, Zi(j) indicates the jth row of the basis 

matrix Zi. Since the illumination L
t
 has been 

estimated, the mean matrix M0 have been 

determined, and the basis matrix Zi have been 

learned, the three parameters {a1,a2,a3} could be 

directly calculated. With {a1,a2,a3} the optimal 

transformation matrix Mcc could be selected. 

Finally, with the selected Mcc, any color pixel of 

the tested image is corrected by equation (13) in 

order to obtain the color-corrected image with 

white balance. 

2.4. The collection of training samples 

Before this section, we focus on model learning 

and how to use the trained model for white 

balance. However, to determine the subspace of 

illumination transformation, lots of samples of 

transformation matrices under various 

illumination pairs should be collected for 

training. In our system, we found that how to 

properly select training samples is much 

important. Without using the training dataset 

which is specifically collected for white balance, 

the trained model may be biased. Until now, few 

relative researches focus on this sample selection 

issue. Thus, in this paper, for image white 

balance, we proposed a new method to select 

training samples  

In [4], the author proposed to select the 

sample of illumination transformation in the 

least square error (LSE) sense. To get a matrix 

sample of illumination transformation, in their 

method, they randomly choose two illuminations, 

named as A and B, from the Simon Fraser 

University color dataset. The color responses of 

1995 surface reflectance under the two 

illuminations are measured based on the 

equation (3) to build two color sets. The optimal 

transformation matrix MBA,LSE provides the least 

square mapping error between the two color set 

is calculated and then selected as one training 

sample. This could be expressed as  

1995
2

, , ,

1

arg min | | .      BA LSE i A i B
M

i

M C MC


    (16)  

In (16), Ci,j is the ith color vector in the jth color 

sets. We should note that the optimal 

transformation matrix MBA,LSE under the least 

square error constraints does not make 

Ci,A=MBACi,B for any color vector pair but 

provide a best compromise solution among all 

color vector pairs. 

However, for the application of white 

balance, the sample selection policy in [4] 

should be further modified. Essentially, the 

method is not suitable for white balance. To 

explain the reason, we consider the color 

correction step in our system. The important goal 

is to dynamically determine the transformation 

matrix based on the illumination color L
t
, the 

canonical illumination color L
w
, and the white 

balance constraint L
w
=MccL

t
. However, the 

optimal least-square-error solution Mtw,LSE, which 

is the ideal matrix we prefer to select, does not 

meet the white balance constraint. That is 

L
w Mtw,LSEL

t
. Therefore, the matrix Mcc we 

select for color correction is away from the ideal 

solution Mtw,LSE. Hence, the sample selection 
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policy in [4] should be further modified. 

In this paper, to modify the selection 

method, we redefine the ideal matrix for 

illumination transformation. Here, instead of 

minimizing the color prediction error for all 

color vectors, an ideal transformation matrix in 

our definition should minimize the color 

prediction error and satisfy the white balance 

requirement. With this definition, we proposed 

to select the transformation sample from 

illuminations A to illuminations B by using a 

constrained least square error (CLSE), defined as  

1995
2

, , ,

1

arg min | | .      (17)

         subject to                   

BA CLSE i A i B
M

i

A B

M C MC

L ML



 



  

In (17), L
A
 and L

B 
are the color vectors of 

illuminations A and B. Here, to solve this 

constrained optimization problem, we use the 

Lagrange multiplier method [13]. 

Next, We collect a training set {Mi,CLSE}i=1~N 

in the CLSE sense and apply PCA to analyze the 

embedded subspace. By verifying the 

eigenvalues, we find that most samples within 

the training set could be 99% approximated by 

using three eigenvectors. Based on this result, 

we could ideally assume that the suitable color 

correction matrix for illumination transformation 

from any B to A is within a learnable 

3-dimensional subspace. Since the matrices 

inside this new model attempt to make 

L
B
=MBA,CLSEL

A
, we could apply the white balance 

constraint to select the transformation matrix 

inside the new model with less model selection 

error.  

 
3. SYSTEM SUMMARIZATION 

3.1. System implementation 

The implementation steps of the proposed 

system are summarized as follows. 

(1) The learning phase:   

A. Collect N training samples {Mi}i=1~N in 

the CLSE sense defined in (17). 

B. Apply PCA to the training sample set 

{Mi}i=1~N and learn the illumination 

transformation model TCLSE 

(a1,a2,a3;Z,M0). 

(2) The testing phase: 

A. Given a color-biased image, we estimate 

the color vector L
t
 of illumination based 

on the gray-world hypothesis by using (9) 

or based on the gray-edge hypothesis by 

using (12). 

B. According the estimated illumination L
t
 

and the trained model 

TCLSE(a1,a2,a3;Z,M0), we calculate the 

three parameters {a1,a2,a3} by using (15) 

and determine the color correction matrix 

Mcc,CLSE by using (14). 

C. With Mcc,CLSE, the color vector of each 

pixel in the tested image is corrected by 

equation (13) in order to obtain the 

color-corrected image. 

     
3.2 Symbol Notation 

In Table 2, we summary the symbols used in the 

paper. 

Table 2: Symbol Notation.  

Symbol Description 

MBA,LSE The optimal LSE color correction matrix 

for illumination pair (A,B).  

MBA,CLSE The optimal CLSE color correction matrix 

for illumination pair  (A,B).. 

TLSE The LSE 3-dimensional matrix model 

TCLSE The CLSE 3-dimensional matrix model 

Mcc,LSE The color correction matrix selected from 

TLSE based on the white balance constraint. 

Mcc,CLSE The color correction matrix selected from 

TCLSE based on the white balance 

constraint. 

Mcc,diag The von-Kries diagonal color correction 

matrix. 

 

4. EXPERIMENTS 
In our experiment, the data is from the Simon 

Fraser University color dataset [9], which 

contains 287 different illumination spectrums 

and 1995 surface reflectance functions. Our 

experiments have three parts. In the first part, we 

verify that the distribution of color correction 

transformation matrices is roughly embedded in 

a 3-dimensional subspace. In the second part, we 

evaluate the performance of three color 

prediction models, including the von-Kries 

model Mcc,diag, the PCA-LSE non-diagonal model 

Mcc,LSE, and the PCA-CLSE non-diagonal model 

Mcc,CLSE. Here, to be discriminative, PCA-LSE 

and PCA-CLSE are used to represent PCA with 

LSE samples and CLSE samples correspondingly. 

In the third part, we demonstrate the 

performance of white balance based on the three 

color prediction models by using many 

color-biased images.  

 

4.1 Verification of Three-Dimension 

Hypothesis 

In this subsection, we verify the hypothesis that 

both the distribution of LSE matrix samples and 

the distribution of CLSE matrix samples could 

be well approximated by 3-dimensional 

subspaces. Note the two subspaces are different. 
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Here, we present the covered data energy as a 

function of the dimension number of the PCA 

model in the Figure 3. As we could see from the 

figure, for both the PCA-LSE and PCA-CLSE 

cases, onlt three main eigenvectors are enough to 

cover more than 99% data energy of the training 

dataset.  

 

Fig. 3: The percentage of covered data energy as a function of 

the dimension number of the PCA model.  

 
4.2 Model Comparison  

To evaluate the performance of a color 

prediction model M, we use the color dataset [9] 

to synthesize color sets {Ci,A} and {Ci,B} under 

an illumination pair (A,B). Each set has 1995 

color response vectors. The performance of M is 

then determined by measuring the average L2 

norm error. That is 

1995
2

, ,

1

_ | | /1995.               (18)i A i B

i

E M C MC


 

 

In (18), E_M indicates the error of model. In our 

experiments, we compare the performance of 

matrices MBA,LSE , MBA,CLSE, Mcc,LSE, Mcc,CLSE, and 

Mcc,diag. It should be noted that only Mcc,LSE, 

Mcc,CLSE, and Mcc,diag could be determined and 

used in the testing phase. However, the 

performance of MBA,LSE and MBA,CLSE could serve 

as the optimal solution bounds for performance 

evaluation. 
Basically, in least square error sense, MBA,LSE is 

the optimal solution. If we add the illumination 

constraint L
B
=ML

A
 as an extra condition, 

MBA,CLSE becomes the best solution. In Table 3, 

we provide the color prediction performance of 

different transformation matrices. In our 

experiments, we have tested more than 300 

illumination pairs though only the details of 9 

illumination pairs are reported in the table. Here, 

we could find the MBA,LSE is the best solution. 

However, since we rely on the illumination 

constraint L
B
=ML

A
 to dynamically select the 

transformation matrix in the testing phase, the 

best solution that we could and should approach 

is MBA,CLSE. Note that under the constraint 

L
B
=ML

A
, MBA,CLSE always outperforms matrices 

Mcc,LSE, Mcc,CLSE, and Mcc,diag. Also, since Mcc,CLSE 

is selected to approach MBA,CLSE, Mcc,CLSE has 

better prediction performance than Mcc,LSE and 

Mcc,diag. Furthermore, without using the 

information from learning process, the diagonal 

model Mcc,diag loses some prediction accuracy 

comparing with Mcc,CLSE and Mcc,LSE. 

 

Table 3: The average L2 norm error of color 

prediction by using different matrices under different 

illumination pairs. Here, “Pair_i” represents the ith 

illumination pair. “Avg” is the average results of all 

illumination pairs. 

 E_MBA,LSE E_MBA,CLSE E_Mcc,LSE E_Mcc,CLSE E_Mcc,diag 

Pair_1 66.5749 80.9645 88.9434 88.4121 136.5637 

Pair_2 92.8401 96.8588 106.0871 105.6406 175.8792 

Pair_3 85.3215 88.5303 100.4778 98.4465 128.2589 

Pair_4 128.8683 136.1685 151.4551 148.8011 198.7618 

Pair_5 45.6411 49.6539 65.8880 63.3145 70.4688 

Pair_6 87.9820 115.4584 132.3479 129.7332 176.5549 

Pair_7 92.810 120.2660 138.4639 135.5461 184.8110 

Pair_8 128.2839 155.3272 168.2428 165.9508 195.8254 

Pair_9 73.7972 76.3346 88.1190 87.0840 117.1466 

Avg 97.0286 110.115 121.1579 118.9739 157.9720 

 

Furthermore, it is worth to discuss the 

performance of Mcc,LSE and Mcc,CLSE. In the 

original design, Mcc,LSE is selected to approach 

the LSE optimal solution MBA,LSE, while MBA,CLSE 

is selected to approach the CLSE optimal 

solution MBA,CLSE. Here, we define model 

selection error as the difference between the 

selected matrix and the target matrix. A major 

reason that causes the model selection error is 

the use of 3-dimentional approximation. In 

general, the optimal solution is close but not 

inside the trained subspace. The approximation 

error therefore generates the model selection 

error. In order to understand the model selection 

error, in Table 4, we measure the average color 

prediction difference MSel_MTar of the selected 

matrix MSel and the target matrix MTar over 1995 

color response vectors. That is  

1995
2

1

_ | | /1995.Sel Tar Sel i Tar i

i

M M M C M C


   (19)   

In Table 4, we find the model selection error 

between Mcc,CLSE and MBA,CLSE  is smaller than 

the error between Mcc,LSE and MBA,LSE. This is 

because, for the LSE case, not only the 

approximation error but also the improper use of 

the white balance constraint causes the model 

selection error. In contrast, for the CLSE case, 
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only the approximation error affects the model 

selection error. If the approximation error goes 

to zero, the model selection error will approach 

zero, and Mcc,CLSE will almost be equal to 

MBA,CLSE. 

    

Table 4: The model selection error MSel_MTar between 

the selected matrix MSel and the target matrix MTar. 

 Mcc,LSE _MBA,LSE  Mcc,CLSE _MBA,CLSE 

Pair_1 22.3685 7.44 

Pair_2 13.2470 8.7818 

Pair_3 15.1563 9.9162 

Pair_4 22.5868 12.6326 

Pair_5 20.2469 13.6605 

Pair_6 44.3659 14.2748 

Pair_7 45.6539 15.2802 

Pair_8 39.9589 10.6236 

Pair_9 14.3218 10.7494 

Avg 24.1293 8.8587 

 

Finally, to compare with the von-Kries 

model, we test the PCA-LSE non-diagonal model 

and the PCA-CLSE non-diagonal model on the 

color prediction experiment, which is mentioned 

in the Figure 1 and Table 1. From, Table 1, Table 

5, and Table 6, we may find that the PCA-CLSE 

non-diagonal model provides better color 

prediction in most patches. 

 

Table 5: Angular errors between the true colors and 

the colors predicted by the PCA-LSE non-diagonal 

model for the tested images in Figure 1. 

 

3.7265∘ 0.8212∘ 0.0693∘ 0.9929∘ 0.5656∘ 2.2217∘ 

2.2059∘ 0.4539∘ 0.1428∘ 1.0245∘ 4.2607∘ 0.4962∘ 

3.7469∘ 0.2856∘ 1.2769∘ 1.5191∘ 0.8395∘ 1.2703∘ 

0.6250∘ 0.1071∘ 1.0234∘ 1.8744∘ 2.1400∘ 1.4873∘ 

 

Table 6: Angular errors between the true colors and 

the colors predicted by the PCA-CLSE non-diagonal 

model for the tested images in Figure 1. 

 

3.7530∘ 0.7924∘ 0.0689∘ 0.9460∘ 0.2667∘ 1.8929∘ 

1.8213∘ 0.4430∘ 0.1316∘ 0.9831∘ 4.2553∘ 0.4487∘ 

3.6846∘ 0.2792∘ 1.3250∘ 1.2585∘ 0.6350∘ 1.0578∘ 

0.7440∘ 0.1073∘ 0.9284∘ 1.5240∘ 2.1706 1.1943∘ 

 

4.3 White Balance Results  

In this subsection, we use some color-based 

images to evaluate the proposed white balance 

system. For each tested image, we estimate the 

illumination based on the gray-world hypothesis 

and the gray-edge hypothesis. The true 

illumination is also provided for comparison. 

Next, based on the proposed system, we 

dynamically select the best PCA-CLSE 

non-diagonal model from the trained model for 

color correction. In Figure 4 and 5, we show the 

white balance results. In Table 7, we show the 

illumination estimation of the two tested images. 

Here, we may find the accuracy of illumination 

estimation is highly relative to the system 

performance.  

 

 

 Table 7: Illumination estimation based on gray-world 

(Ill_GW) and gray-edge (Ill_GE) and their angular 

errors (AE) comparing with the true illumination 

(Ill_True).  

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 4: (a) A color-biased image and its white balance results 

based on (b) true illumination, (c) gray-world illumination 

estimation, and (d) gray-edge illumination estimation with 

PCA-CLSE color correction.   

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5: (a) A color-biased image and its white balance results 

based on (b) true illumination, (c) gray-world illumination 

estimation, and (d) gray-edge illumination estimation with 

PCA-CLSE color correction.   

Image Ill_True Ill_GW Ill_GE AE_GW AE_GE 

Fig. 4 (0.18,0.31,0.93) (0.17,0.31,0.94) (0.21,0.33,0.92) 0.286 o 1.985o 

Fig. 5 (0.26,0.39,0.88) (0.33,0.43,0.84) (0.31,0.42,0.86) 5.452o 3.472o  
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5. CONCLUSION  
In this paper, we present a non-diagonal model 

for color correction, which aimed to minimize 

the color bias while keeping the balance of white 

color in a tested image. The non-diagonal model 

provides more degrees of freedom and better 

color prediction. However, the challenge of 

using non-diagonal model to replace the 

diagonal model is more information is required 

in order to determine the optimal 3-by-3 

transformation for color correction. In our 

system, we proposed to rely on the PCA-based 

learning process to gain extra information. By 

utilizing PCA to extract a compact subspace of 

illumination transformation matrix, we could 

record the mapping of environmental 

illumination and its optimal non-diagonal 

transformation. With the mapping model and the 

estimation of illumination, we can dynamically 

select the best matrix to correct the color biases 

and get a better white balance result.  

Even though the learning process could 

provide information, the accuracy of the 

information is highly dependent on the training 

samples. Hence, we also proposed a sample 

selection method, which is specific designed for 

white balance algorithms.  

In this paper, we find that we could have 

better color prediction through the learning 

process. In the future, we attempt to gain more 

information based on learning methods so that 

we could provide better color correction for the 

current white balance system. In addition, our 

future extension will also focus on the 

improvement of the accuracy. 
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