國立高雄應用科技大學

100-101年度獎勵科技大學及技術學院 教學卓越計畫 產學及研究成果轉課程製作教材

電機工程系 黃敬群教授 學生黃得凱

A study of Computer-Aided Detection on digital chest radiographs

Outline

- Goal
- Introduction
- Methods
 - Segmentation
 - The ASM algorithm
 - Feature extraction
 - Gabor
 - Feature classification
 - SVM
- Experiment
- Test result

Goal

This paper presents an automatic computer-aided detection scheme on digital chest radiographs to detect disease.

Introduction

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Methods

In this paper, each main step have independent algorithm in block.

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

The ASM algorithm could be mainly divided into two steps, training and segmentation.

Training phase

Label the lung contour landmarks on the training image

Example 1 training

Right Lung

left Lung

Example2 testing

the best position to recognition lung region.

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Subdividing the Lung Fields into Six Zones

- Algorithm:
 - 1. Computing lung area.
 - 2. Subdividing the Lung Fields

left lung	right lung
apex and bottom position	apex and diaphragm position
horizontal lines	horizontal lines

Finding the best position to recognition lung region.

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Preprocessing

- Size normalization
 - **700*700**

- Six kernel:
 - Theta = 0, pi/6, pi/3, 3*pi/2, 2*pi/3, 5*pi/6
 - Lambda = 8

Kernel

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Feature Calculation

Moment:

MEAN, Standard deviation, Variance, Skewness

Feature	Equation
Mean	$M_1 = \sum_i i \cdot h(i)$
Standard deviation	$M_2 = \sqrt{\sum (i - M_1)^2 \cdot h(i)}$
Skewness	$M_3 = \frac{1}{M_2^3} \sum_{i=1}^{3} (i - M_1)^3 \cdot h(i)$
Kurtosis	$M_4 = \frac{1}{M_2^4} \sum (i - M_1)^4 \cdot h(i) - 3$

Mean for each regions

Feature 1:

Feature 2:

Mean for each regions

Feature 3:

Feature 4:

Data saving

Each region field of lung

	moment1	moment2	moment3	moment4
kernel1	Feature 1	Feature 2	Feature 3	Feature 4
kernel2	Feature 1	Feature 2	Feature 3	Feature 4
kernel3	Feature 1	Feature 2	Feature 3	Feature 4
kernel4	Feature 1	Feature 2	Feature 3	Feature 4
kernel5	Feature 1	Feature 2	Feature 3	Feature 4
kernel6	Feature 1	Feature 2	Feature 3	Feature 4

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Feature Normalization

- Feature Normalization
 - Equation:

$$X_{normal} = \frac{2X - (X_{\text{max}} + X_{\text{min}})}{X_{\text{max}} - X_{\text{min}}}$$

- Computer-Aided Detection (CAD)
 - Generally, a complete CAD scheme for chest consists of three main steps:

Feature classification

Region Level Classification

These feature vectors are used by the classifier to estimate the abnormalities of each region.

Feature classification

- Chest Level Classification
 - A chest level classifier is employed to integrate the probabilities of the six regions to obtain the classification result for the whole image.

Methods	Weighted	Probability		
The weighted voting	$W_i = rac{A_{ u_i}}{\displaystyle\sum_{i=1}^N A_{ u_i}}$	$\Pr = \sum_{i=1}^{N} W_i P_i$		
The weighted multiplying	$f_{i} = MAX(\frac{A_{v_{i}} - T_{Av}}{1 - T_{Av}}, 0)$	$\Pr = 1 - \prod_{i=1}^{N} (1 - f_i P_i)$		

SYMBOL

The area under the ROC curve (AUC) value is denoted as Av. (range from 0 to 1)

 $T_{A
u}$ denote the threshold to determines the minimum value $A_{
u_i}$.

Methods	Weighted & Weighted factor	Probability		
The weighted voting	$W_i = rac{A_{ u_i}}{\displaystyle\sum_{i=1}^N A_{ u_i}}$	$\Pr = \sum_{i=1}^{N} W_i P_i$		
The weighted multiplying	$f_{i} = MAX(\frac{A_{v_{i}} - T_{Av}}{1 - T_{Av}}, 0)$	$\Pr = 1 - \prod_{i=1}^{N} (1 - f_i P_i)$		

Experiment

ASM Right Lung

Red: shape model Blue: mean model

Test result

Feature Vector	Region #	lg <i>C</i>	lg Γ	SSAve	Acc	Ses	Spe	AUC value
Full	R1	9	-11	0.912	0.908	0.920	0.903	0.998
Selected	R1	11	5	0.878	0.882	0.862	0.894	0.968
Full	R2	7	-9	0.923	0.925	0.920	0.926	0.999
Selected	R2	11	-7	0.879	0.889	0.851	0.907	0.970
Full	R3	9	-9	0.928	0.922	0.944	0.913	0.999
Selected	R3	7	-5	0.884	0.892	0.862	0.905	0.971
Full	R4	7	-9	0.895	0.892	0.904	0.887	0.998
Selected	R4	11	-5	0.873	0.875	0.866	0.879	0.988
Full	R5	11	-11	0.924	0.924	0.921	0.927	0.998
Selected	R5	11	-3	0.889	0.880	0.911	0.867	0.998
Full	R6	9	-11	0.896	0.892	0.905	0.885	0.993
Selected	R6	11	-5	0.878	0.875	0.886	0.870	0.979

Classification Results of Training Set on Feature Vectors for Each Region Using Leave-One-Out Cross-Validation Method.

ROC curves for the training set for the six regions on feature vectors.

REFERENCES

- [1] Ginneken BV, Romeny BM, Viergever MA: Computeraided diagnosis in chest radiography: a survey. IEEE Trans MedImag 20(12):1228-1241, 2001.
- [2] Peichun Yu, Hao Xu, Ying Zhu, Chao Yang, Xiwen Sun, and Jun Zhao1 An Automatic Computer Aided Detection Scheme for Pneumoconiosis on Digital Chest Radiograps.
- > [3] Jen Hong Tan, U. Rajendra Acharya, Collin Tan, K. Thomas Abraham, Choo Min LimComputer-Assisted Diagnosis of Tuberculosis: A First Order Statistical Approach to Chest Radiograph.
- ▶ [4] Kobatake H, Ohishi K, Miyamichi J: Automatic diagnosis of pneumoconiosis by texture analysis of chest X-ray images. IEEE ICASSP 12:610-613, 1987.
- [5] Soliz P, Pattichis MS, Ramachandran J. Computerassisted diagnosis of chest radiographs for pneumoconioses. Proceedings of SPIE 667-675, 2001